Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
نویسنده
چکیده مقاله:
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute processes. In this paper, we develop discriminant analysis technique for monitoring the mean vector of correlated multivariate-attribute quality characteristics in the first module. Then in the second module, a novelty approach based on the combination of artificial neural network (ANN) and discriminant analysis is proposed for detecting different mean shifts. The proposed approach is also able to diagnose quality characteristic(s) responsible for out-of-control signals after detecting different step mean shifts. A numerical example based on simulation is given to evaluate the performance of the proposed methods for detection and diagnosis purposes. The detecting performance of the second module is also compared with the extended T2 control chart and with the extension of an ANN in the literature. The results confirm that the proposed method outperforms both methods.
منابع مشابه
Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملsimultaneous monitoring of multivariate-attribute process mean and variability using artificial neural networks
in some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. in this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by the combination of both correlated variable and attributes quality characteristics. In this paper, we propose a novel control scheme based on the combination of two multi-layer perceptron neural networks for simultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attr...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملProcess analysis, monitoring and diagnosis, using multivariate projection methods
Multivariate statistical methods for the analysis, monitoring and diagnosis of process operating performance are becoming more important because of the availability of on-line process computers which routinely collect measurements on large numbers of process variables. Traditional univariate control charts have been extended to multivariate quality control situations using the Hotelling T2 stat...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 28 شماره 11
صفحات 1634- 1643
تاریخ انتشار 2015-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023